Home Archives for james.runkle@drummondst.com

Author: james.runkle@drummondst.com

Natural Ingredients in Cosmetics

by james.runkle@drummondst.com james.runkle@drummondst.com No Comments

Natural ingredients offer a myriad of possibilities for developing effective cosmetic products. Their popularity has greatly increased over the past two decades in part due to a major shift in public opinion about the environment, human health, and wellbeing. Plant ingredients have been shown to be effective treatments of the skin for a number of conditions including erythema, hyperpigmentation, photoaging, photocarcinogenesis, and photoimmunosuppression. Nowadays, botanical ingredients are found in almost every type of cosmetic product for the skin. In addition to plants, minerals are also natural ingredients. Some of the most common ones found in modern-day cosmetic products consist of iron oxides, zinc oxide, and titanium oxide, which are mostly used in sunscreen formulations.

Historical Perspective of Natural Ingredients in Cosmetics

Natural ingredients have been used in cosmetic products since antiquity. The early Egyptians were renowned for their makeup preparations and other cosmetic ingredients used to cleanse and scent the body. The most common cosmetic potions consisted of eye paints, facial paints, oils, and solid fats (ointments) [1]. As an example, kohl is a paste/powder that was commonly used as eye shadow and is reported to have been made with galena ore, which contains lead sulfide. A paste made from malachite, a green ore of copper, was also used to color the eyes of Egyptians. Some of these ingredients probably caused adverse reactions, or could have led to serious disease after prolonged use.

Hair and nail dyeing in ancient Egypt was achieved using henna, which was extracted from the plant Lawsonia inermis, also known as the Egyptian privet. Henna was also popular in ancient India and China as a hair dyeing agent. In India, henna was also used to paint designs on the hands and feet in the art known as mehndi [2]. The early Egyptians also used fats and oils to apply to skin and hair, protecting them from the powerful sun rays and arid climate. The Egyptians were also very astute on the use of fragrances. They used many different types of herbs and oils, such as aloe, chamomile, lavender, myrrh, olive oil, peppermint, sesame oil, and thyme [3].

Turmeric, a traditional Indian spice from the root of Curcuma longa, was commonly used in Ayurvedic medicine as a therapeutic agent. It contains curcumin, which has anti-inflammatory properties. In recent years, turmeric has become an extremely popular cosmetic ingredient for skin care preparations. In traditional Chinese culture, skin was treated oils and herbs. Panax ginseng is one of the most popular ingredients in ancient herbal therapy, and is still widely used today. Rice powder was also popular and used to paint the face, serving as a form of makeup that provided a whitish appearance and had the benefit of removing excessive oils. The use of nail polish dates back to ancient China, using egg whites, flowers, and beeswax [4]. Unfortunately, not all members of society were permitted to paint their nails. It was reserved for royals, who painted their nails gold and silver, and other members of the upper echelon of society.

Natural ingredients were also used in cosmetics in other periods of history as well. In biblical times, the Hebrews used oils obtained from various plant and animal sources as emollients to protect the skin from the arid environment and intense solar radiation. In addition, red ochre (an iron oxide) was used for painting the lips, ash and beeswax for painting the nails, and herbal perfumes were applied to the skin and clothing [5]. During the early Roman Empire, Pliny the Elder (Gaius Plinius Secundus), who was a prolific author, naturalist, and philosopher, wrote about the control of perspiration using a mixture of rue, rose oil, and aloe vera [6].

In the western tradition, the use of natural ingredients in cosmetics continued through the Middle Ages and Renaissance all the way to the 19th century, although the overall use of cosmetics fluctuated throughout history most likely due to sociological and economic factors. Curiously, at the dawn of the 20th century, color cosmetics were not very popular in western societies, and even frowned upon for women to wear in public. In the United States and many other western cultures, this attitude began to change significantly as movie stars began wearing makeup products in Hollywood films. During this period, there was a flurry of activity in the development of highly functional synthetic ingredients that enjoyed widespread use in cosmetic products. However, the most recent natural ingredient movement began to take place in the late 1990s and early 2000s as the population became more concerned with health, wellbeing, and global environmental conditions.

Botanical Ingredients

The increasing awareness of the health benefits of phytochemicals has led to a transformation in the cosmetic industry [7]. The recent explosion of the use of herbal ingredients in cosmetic products began with ingredients that offered improvement in the physiological condition of the skin by treatment with formulas containing plant ingredients [8]. This movement evolved to include a greater effort to replace conventional synthetic ingredients that carried other functions in the formula, such as rheology modifiers, emollients, cleansing agents, etc. [9]. Today, there are even some forms of cosmetic packaging that are based on natural or naturally derived ingredients.

There are numerous plant ingredients that are used in cosmetic products for their cosmeceutical properties. Some of the most common ingredients include Aloe vera, Camellia sinensis (tea polyphenols), Capparis spinosa flower buds, Culcitium reflexum H.B.K. leaf, Curcuma longa (curcumin), French maritime pine bark (pycnogenol) Gingko biloba, pomegranate fruit, red orange, Sanguisorba officinalis L. root, Sedum telephium L. leaf, and Silybum marianum (Silymarin). Extracts of natural products contain polyphenols and other phytonutrients that have beneficial effects for the skin. Plants evolved to produce these ingredients to protect themselves from environmental insults, including harmful UV radiation.

Many botanicals have been used for millennia in traditional Chinese medicine and Ayurveda. Nowadays, there is a flurry of activity in the skin care market with similar types of ingredients, due to a growing body of scientific evidence demonstrating their utility as skin therapeutic agents. Among other things, botanical ingredients have shown promise as anti-inflammatories for skin to treat rosacea, preventative agents against melanoma, bioactives for the treatment of skin aging, and protective agents against UV-induced immunosuppression and photocarcinogenesis [10].

Incorporating plant ingredients into cosmetics can also present challenges to the formulator in terms of stability and delivery [11]. For this reason, there have been many efforts focused on developing carrier systems for botanical ingredients [10, 12]. Most of these carriers are emulsions, vesicular systems, or lipid particulate systems. Emulsions for this type of application usually are microemulsions, nanoemulsions, micro-nanoemulsions, multilayer emulsions, or Pickering emulsions. Common vesicular systems consist of liposomes, ethosomes, phytosomes, and transferosomes. The two most popular lipid particulate systems are solid-lipid nanoparticles and nanostructured lipid carriers.

Polysaccharide Ingredients

Polysaccharides from many natural sources are used in cosmetics. They are often added to formulas as rheology modifiers, but may also be used for a variety of other functions, such as providing moisture to the skin or enhancing the styling properties of hair. The most common polysaccharides found in cosmetic products are agar, alginate, carrageenan, derivatives of cellulose (e.g., hydroxyethylcellulose), chitin, chitosan, dextrin, guar gum derivatives, gum arabic, hyaluronic acid, pectins, starch derivatives, and xanthan gum. In addition to the applications already mentioned, polysaccharides are also found in masks and shampoos/body washes (coacervate agent). A number of different polysaccharides may also be included in personal care products for their antibacterial, antiviral, anticoagulant, anticancer, antioxidant, and immunomodulating activity [13]. Overall, they have a long and safe history of use in cosmetic products.

Essential Oils

Essential oils enjoy widespread utility in cosmetic products due to their pleasant odor and biological activity [14-16]. They are highly concentrated liquid mixtures of small molecules (mostly aromatic compounds, terpenes, and terpenoids) extracted from the bark, buds, flowers, fruits, leaves, rhizomes, roots, and seeds of plants [14]. Some of the most common essential oils found in cosmetic products are citronellol, citrus, eucalyptus, geraniol, lavender, limonene, linalool, and tea tree [16]. If formulated at low concentrations, essential oils are relatively safe. However, at higher concentrations their use may result in skin sensitivity reactions and even the development of allergies [15]. In addition to their aromatic characteristics, essential oils have analgesic, antibiotic, and antiviral properties. For this reason, there is a great deal of interest in aroma therapy and its positive health benefits.

Toxicological Considerations

There is some concern about the safety and toxicology of natural ingredients. This mostly stems from the presence of ingredients that are not listed on the labels of cosmetic products. For example, citral, farnesol, limonene, and limanol—fragrance compounds present in many natural ingredient products—can illicit allergic reactions [17]. Furthermore, there could be many molecules in the formula that are only listed as one ingredient. On the other hand, it has been argued that exposure to natural toxic substances in personal care products is probably not the principal route of exposure. Rather, direct exposure to vegetation and agricultural crops is considered the most dominant pathway [18]. Skin sensitization is another concern with the use of botanical ingredients [19]. As an example, the Feverfew plant (Tanacetum parthenium), known for its anti-inflammatory properties, contains parthenolide, which is a potent skin sensitization agent. Therefore, being able to produce parthenolide-free bioactives is a key challenge to provide a non-sensitizing product for skin care [20, 21].

Concluding Remarks

Natural ingredients have a long history in cosmetics products. Overall, there has been a great deal of renewed interest in their inclusion in contemporary personal care formulas. Combined with modern analytical and process technology, today’s cosmetic chemist has the opportunity to participate in the large-scale transformation of the personal care industry.

 

References

  1. Lucas, A., Cosmetics, perfumes, and incense in ancient Egypt. J Egypt Arch, 1930. 16(1/2): p. 41-53.
  2. Nayak, M. and V. Ligade, History of cosmetics in Egypt, India, and China. J Cosmet Sci, 2021. 72: p. 432-441.
  3. Chaudhri, S. and N. Jain, History of cosmetics. Asian J Pharm, 2009. 3(3): p. 164-167.
  4. Madnani, N. and K. Khan, Nail cosmetics. Indian J Dermatol Venereol Leprol, 2012. 78: p. 309-317.
  5. Parish, L. and J. Crissey, Cosmetics: A historical review. Clin Dermatol, 1988. 6(3): p. 1-4.
  6. Bostock, J. and H. Riley, Rue: eighty-four remedies, in Remedies derived from the garden plants. 1855, Taylor and Francis: London, UK.
  7. Dini, I. and S. Laneri, The new challenge of green cosmetics: natural food ingredients for cosmetic formulations. Molecules, 2021. 26: p. 3921.
  8. González-Minero, F. and L. Bravo-Díaz, The use of plants in skin-care products, cosmetics, and fragrances: Past and present. Cosmetics, 2018. 5: p. 50.
  9. Bom, S., M. Fitas, A. Martins, P. Pinto, H. Ribeiro, and J. Marto, Replacing synthetic ingredients by sustainable natural alternatives: A case study using topical O/W emulsions. Molecules, 2020. 25: p. 4887.
  10. McMullen, R., Antioxidants and the Skin. 2nd ed. 2019, Boca Raton, FL: CRC Press.
  11. Hoang, H., J. Moon, and Y. Lee, Natural antioxidants from plant extracts in skincare cosmetics: recent applications, challenges, and perspectives. Cosmetics, 2021. 8: p. 106.
  12. Yang, S., L. Liu, J. Han, and Y. Tang, Encapsulating plant ingredients for dermocosmetic application: An updated review of delivery systems and characterization techniques. Int J Cosmet Sci, 2020. 42: p. 16-28.
  13. Ahsan, H., The significance of complex polysaccharides in personal care formulations. J Carbohydr Chem, 2019. 38: p. 213-233.
  14. Abate, L., A. Bachheti, R. Kumar Bachheti, A. Husen, G. M, and D. Pandey, Potential role of forest-based plants in essential oil production: An approach to cosmetic and personal health care applications, in Non-Timber Forest Products: Food, Healthcare and Industrial Applications, A. Husen, R. Kumar Bachheti, and A. Bachheti, Editors. 2021, Sprinter Nature: Cham, Switzerland. p. 1-18.
  15. Sarkic, A. and I. Stappen, Essential oils and their single compounds in cosmetics—A critical review. Cosmetics, 2018. 5: p. 11.
  16. Sharmeen, J., F. Mahomoodally, G. Zengin, and F. Maggi, Essential oils as natural sources of fragrance compounds for cosmetics and cosmeceuticals. Molecules, 2021. 26: p. 666.
  17. Klaschka, U., Natural personal care products—analysis of ingredient lists and legal situation. Environ Sci Eur, 2016. 28: p. 8.
  18. Bucheli, T., B. Strobel, and H. Hansen, Personal care products are only one of many exposure routes of natural toxic substances to humans and the environment Cosmetics, 2018. 5: p. 10.
  19. Puginier, M., A. Roso, H. Groux, C. Gerbeix, and F. Cottrez, Strategy to avoid skin sensitization: application to botanical cosmetic ingredients. Cosmetics, 2022. 9(2): p. 40.
  20. Koganov, M., Parthenolide free bioactive ingredients from Feverfew (Tanacetum parthenium) and processes for their production and use. U.S. Patent No. 7,537,791. 2009.
  21. Sur, R., K. Martin, F. Liebel, P. Lyte, S. Shapiro, and M. Southall, Anti-inflammatory activity of parthenolide-depleted Feverfew (Tancetum parthenium). Inflammopharmacology, 2009. 17(1): p. 42-49.

 

NYSCC Suppliers’ Day Announces Noah Rosenblatt, President, Space NK, INDIE 360° Keynote

by james.runkle@drummondst.com james.runkle@drummondst.com No Comments

INDIE 360° Pavilion Spotlights Indie Companies Curated by Access Beauty Insiders at the Leading Beauty & Personal Care Ingredients and Formulation Event held May 3 & 4

(New York, NY, April 2022)—NYSCC (New York Society of Cosmetic Chemists) is pleased to announce that Noah Rosenblatt, President of North America at Space NK will address attendees during a one-on-one fireside chat on Wednesday, May 4th at 9:00 am during Suppliers’ Day at the Javits Center in New York.  This fireside chat, “Space NK: Bridging High Street to Main Street,” will be moderated by Kelly Kovack, Founder & CEO of BeautyMatter. Topics covered will address a multitude of subject matters including consumer migration from cities to small towns and how that impacts today’s retail landscape, to ingredient transparency and consumer shopping behavior vis-à-vis ingredients. Beauty founders and the supplier community will find the conversation relevant and insightful.

INDIE 360° at Suppliers’ Day is an immersive educational and sourcing experience providing up and coming indie brands with insight, information and resources needed to succeed. The program was created to foster connections between indie brands and suppliers and allow for open communication as well as to spotlight newer to market companies who are utilizing unique ingredients or combination of ingredients. The INDIE 360°  program is moderated and chaired by Luciana Coutinho with the pavilion participants curated by Daniela Ciocan, Access Beauty Insiders.

“We are thrilled to offer this fireside chat as part of the INDIE 360° program,” said Giorgio Dell’Acqua, Chair, NYSCC.  “Noah has a proven track record of discovering and nurturing founder brands as well as connecting with consumers. His conversation with Kelly will be a highlight of our event and inspire and engage our attendees.”

Rosenblatt joined Space NK in 2015, bringing more than eight years of beauty experience with prior roles at LVMH and 20 years of retail industry experience working with numerous emerging brands looking to expand their footprint in the US. Throughout his tenure Noah has built meaningful relationships with brands and founders alike to ensure Space NK continues to be relevant in the marketplace.  From long term partners to newer developed relationships, under his leadership nearly 50 brands are part of the Space NK wholesale portfolio including By Terry, Chantecaille, Tata Harper, Natura Bisse, Vintners Daughter, Aesop, Diptyque and Boy Smells.

A half-day INDIE 360° educational program will follow the fireside chat on May 4th and feature a presentation from BeautyStreams on “What’s Happening in the INDIE Market? Trends & Forecasts;” followed by a “Panel of Founders,” from entrepreneurial companies led by Deanna Utroske of Beauty Insiders.  There will also be timely topics discussions on ”The Storm Continues: Beauty Industry Supply Chain Update and Outlook presented by IBA;” “Leveraging Corporate Accelerators to Spur Greater Inclusion in Personal Care;” and “Advertising 101: Best Practices for Marketing Ingredient/Product Benefits.”

The INDIE 360° Pavilion on the exhibit floor highlights fresh ideas and concepts from select companies who are utilizing unique combinations of ingredients and novel formulations.  Companies participating include CandaScent Labs, Dr Lili Fan Probiotic Skincare, High on Love, I-on Skincare, Lamik Beauty, Malibu Apothecary, Onekind, PRIORI Adaptive Skincare, Redmint, Shielded Beauty, Sunrise Session, and Touch in Sol.

Show attendees will be able to meet with the founders of these companies and vote for the ‘PEOPLE’S CHOICE AWARD’ with the winner being announced on Wednesday, May 4th over a champagne reception starting at 3 p.m.

The INDIE 360°  Program at Suppliers’ Day was made possible by the support of BASF, Grant Industries, Lubrizol, luluble, and TRI-K.

Suppliers’ Day is the NYSCC flagship event and attracts participants working in R&D and product development for the biggest brand manufacturers in beauty and personal care as well as emerging independents.  Additional educational programs offered this year will cover microbiome, natural colorants, in-vitro modeling, cosmetic regulations, safety assessment & quality assurance, along with “Digital Age of Beauty,” “Discover Sustainability,” “World of Chemistry,” and “Hair: Textured, Curly, Straight?” programs and a “Regulatory Update” session. Future Chemists Workshop, Mentorship Lunch Mixer, and the SCC/NYSCC Co-sponsored Career Development Day will be held in support of young professionals in the industry. The NYSCC Industry Awards Night will take place on May 3rd at SONY Hall and feature the announcement of the finalists of the CEW Supplier’s Beauty Creators Award.

NYSCC Suppliers’ Day–The Chemists Classroom

by james.runkle@drummondst.com james.runkle@drummondst.com No Comments

Science and Sustainability at the Forefront of Leading Beauty and Personal Care Ingredients and Formulation Trade Show and Conference, May 3-4, at the Javits Center in New York City

 

(New York, New York, April 2022)—The New York Society of Cosmetic Chemists (NYSCC) announces its educational program for Suppliers’ Day, taking place May 3-4, at the Jacob Javits Convention Center in New York City.  As North America’s most important ingredients and formulation event, Suppliers’ Day will provide the latest trends, scientific findings, global ingredients, raw materials and solutions that will invigorate and accelerate beauty and personal care product developments.

Curated by the NYSCC Scientific Committee, along with support from media and industry association partners, Suppliers’ Day will offer close to 60 hours of educational programming on the topics that are most pressing to those involved in formulations, sourcing, and marketing beauty and personal care products including:

-Two NYSCC Scientific Advisory Courses taking deep dives into:  In-vitro Modeling to Predict Clinical Outcome and Natural Colorants.

-Digital Age of Beauty focusing on key strategies, digital tools and innovative technologies that influence product development, and speed to market

Including AI and VR

-Microbiome: Inside Out Beauty featuring different expert perspectives and insight  on microbiome health and how exposome impacts product development.

PCPC & IKW Present: Essential Elements of Cosmetic Regulation, Safety Assessment, and Quality Assurance

INDIE 360 covering every angle of launching and sustaining a brand and featuring a one-on-one fireside chat with Noah Rosenblatt, President, Space NK.

All About Hair, a lunch & learn program exploring the innovative ingredients–plant based, sustainable–providing superior performance and effective treatment for every hair type.

-Popular program tracks focused on green issues and reducing waste with Discover Sustainability, global sourcing and marketing trends from World of Chemistry; IBA’s Regulatory & Compliance Update and Innovations from the Exhibit Floor in the Presentations Theater.

-Pre-event SCC CEP Courses on Fundamentals of Microbiome for the Cosmetics Industry and Fundamentals of Color.

            “With the theme, ‘Your Source for Science & Sustainability Solutions,’ Suppliers’ Day will fill the Javits Center with scientific expertise and discoveries that are driving beauty and personal care innovations and bringing new products to life.  Attendees will be immersed in sustainable, clean and green solutions impacting new product development and business success,” said Giorgio Dell’Acqua, Chair, NYSCC.

Continuing its mission to educate and involve the workforce of the future and students, Suppliers’ Day will also host the popular Future Chemists Workshop and hold a Mentor Lunch Mixer and Information Session. NYSCC is also collaborating again with National SCC for its 3rd Annual Career Development Day on May 4th.

The finalists of the CEW Supplier’s Beauty Creators Award for Ingredients & Formulation will be revealed at the NYSCC Industry Awards Night celebration on May 3rd  at SONY Hall.

The expanded show floor will feature more than 430 global exhibitors showcasing novel ingredients, formulas, processing, advanced scientific testing equipment and more.  Dynamic areas on the show floor will provide an enhanced educational experience including the classic Future Chemists Workshop, Presentation Theater, and the return of the INDIE 360 Pavilion spotlighting fresh ideas and concepts from companies and brands who are utilizing unique combinations of ingredients  New this year will be a Poster Presentations Showcase with the latest scientific findings and ingredients and formulation breakthroughs.

Suppliers’ Day is the NYSCC flagship event and attracts participants working in R&D and product development for the biggest brand manufacturers in beauty and personal care as well as emerging independents.  To register to attend and for more information on NYSCC Suppliers’ Day visit: https://nyscc.org/suppliers-day/.

The use of in-vitro modeling to predict clinical outcome

by james.runkle@drummondst.com james.runkle@drummondst.com No Comments

The use of in-vitro modeling to predict clinical outcome: A users guide to technology development

In-vitro models have been a staple of technology development as well as a tool for mapping mechanistic understanding of skin biology.  Their complexity has evolved over time to become quite predictive to clinical outcomes.  In-vitro modeling is a powerful solution for driving product development, innovation and claim substantiation, and it allows researchers to screen technologies as well as position them against new or novel mechanisms.  The NYCSCC is offering a mini-symposium at this year’s Supplier’s Day (May 3rd and 4th) to present various in-vitro models currently available to our industry using a cross section of speakers from both academia, industry suppliers and testing firms.  (See the end of the blog for a list of topics being presented.)  The following is a good primer for those interested in leveraging in-vitro data for technology development.

In-vitro models are the result of many of the inventions we learned about in science class at an early age.  Here is a brief history of how we got here: First was the invention of the microscope by A. Van Leeuwenhoek in 1676, then Schleiden and Schwann’s formulated cell theory in 1839,  Roux’s first method of cell culture in 1885,  aseptic techniques for cell culture in 1912, establishment of the first mouse fibroblast cell in 1943, the first immortal human cell line known as “HeLa” by George Gey in 1951, the finite life span of human cells defined by Hayflick in 1965, the first therapeutic protein manufactured in cell culture for human clinical trial in 1983, culture human embryonic stems cells isolated by Thomson & Gearhart in 1998 and finally 3D tissue and organ bioprinting techniques introduced in 2010.

At present, it is no longer possible to use animal testing for ingredients and cosmetic products in the Organization for Economic Co-operation and Development (OECD) member states since 2009. This mandate has served as an “evolutionary pressure” on the industry to leverage in-vitro modeling as an alternative to animal use in in our industry, leading to the development and moderate acceptance of in-vitro tests that are used to determine the safety and efficacy of ingredients and topical products.

The advantages of in-vitro testing are:

1) Reducing the use of human subjects in the early stages of R&D projects; this not only has logistical and ethical benefit in terms of time and money but also removes the regulatory and safety aspects when discovery is the main strategic driver.

2) In-vitro modeling can be designed for high throughput screening of compounds/technologies. As a result, modeling this way saves time and money.

3) Reducing clinical variability as conditions are better controlled and repeatable.

4) Little to no testing regulations; however, sound experimental design including appropriate controls, benchmarks, time points and culture conditions are paramount to success.

The most saliant disadvantage of using in-vitro testing models is that results and findings need to be confirmed in/on more complex systems.  For example, if you screen for gene effects in monolayer cultures, one will need to confirm protein expression to confirm the gene expression profile.  Furthermore, more complex culture systems such as 3D culture models or ex-vivo biopsy modeling or human testing would be the logical next step to evaluate bioavailability, bioconversion, and efficacy.

The latter would require an intermediate step of safety assessment, ethics review (IRB) and cost analysis.  Furthermore, in-vitro modeling does require dedicated space and personnel.  This is certainly a capital expenditure; however, there are 3rd party laboratories and collaborations with academia available for almost every need if you look hard enough.

The ability to customize a culture system to fit one’s needs is very encouraging. In-vitro models range from simple monolayer systems to complex muti-tissue engineered models.  Advances in maintaining cells in culture are continuously improving, allowing for data generation that closely mimics clinical results.  The advent of bio chambers, flexible substrates and precisely defined medias have advanced the understanding of cell biology exponentially.  The technics for retrieving and cultivating keratinocytes, fibroblast, melanocytes and dendric cells from skin are commonplace in cell culture facilities around the globe resulting on less reliance on transformed cell lines (those that are immortal) which have a poor correlation to clinical outcome in many cases.  3D skin models with natural human features are best used to analyze ingredients and formulations for this reason. Skin irritation and toxicity tend to be represented by less stringent biomimicry, but this too is evolving to more relevant culture systems.

The vast number of possible applications and products in our industry can target different body areas including intact skin, thin skin (under eye), oily skin (face vs abdomen), sun exposed vs sun protected, healthy or impaired skin which come with many specific characteristics in composition, structure, and function as a primary focus.

In-vitro reconstructed human tissue models are recognized as being sensitive and reliable for areas outside of skin in a pre-clinical environment. Using 3D human reconstructed models such as gingival and vaginal systems can model mucosal tolerance, “immature” epidermal models can mimic infant/baby skin, and culture conditions can be designed to impair function (missing ceramide production) or condition (sensitive skin) to find solutions to the impairment such as in barrier function.

Topical applications represent a vast range of formulation options, accounting for multiple product types focusing on health, gender, age conditions, and body targets.  The constant quest for innovation, whether through the search for new molecules or the extended use of old ones, pushes our industry to take many factors into account in the early stages of development.  Multiple models of different variations can be applied in sequence to the same project scope representing multiple but independent evaluations and approaches simultaneously.

Manufacturers are also looking to in-vitro modeling to satisfy environmental impact effects of their ingredients and products.  Reef safe, biodegradability and species toxicology are becoming commonplace in raw material questionnaire surveys and in environmentally responsible platforms within many companies.

The list of in-vitro models is endless; however, there are a handful of go-to models that make up many R&D arsenals.  Reconstructed human epidermis (RHE) is a very common model that uses keratinocytes harvested from surgically excised tissue.  When these cells are cultured at the air/media interface of a culture well, they naturally form a representative viably functioning epidermis.  Full thickness skin models (FTSK) are composed of both a dermal compartment containing human skin fibroblasts embedded in a collagen matrix and human keratinocytes seeded on top to form the epidermis.  Ex-vivo skin explants use full thickness whole skin biopsies in culture, which allows the effect of individual ingredients and formulations, transdermal delivery, topical penetration, and percutaneous absorption to be tested in an environment more closely mimicking normal skin. Even though this model system is the closest to intact skin, it has its limitations.  Recent in-vitro modeling of neurodermatology has been achieved by generating a co-culture system of sensory neurons and skin cells, which can simulate in vivo human skin and provide innovative solutions to neuro sensory conditions such as itch, neuro inflammation and pain. Pigmented epidermis model composed of normal human keratinocytes cultivated in the presence of melanocytes of phototypes in the basal layer resulting in a gradient of melanin production when exposed to varying degrees of UV, IR and HEV light. Atopy skin models recreate conditions of this disease state via a co-culture of keratinocytes, fibroblasts, dendritic cells, and T-cells which can be applied to screen therapeutics and to gain a better understanding of the biological mechanisms involved.

The future state will focus on using pluripotent stem cells in a variety of culture conditions and matrixes to reconstitute tissues of interest, thus, more accurately modeling solutions for aged, damaged, or dysfunctional tissue.  The idea of in-situ (to examine the phenomenon exactly in place where it occurs) bioprinting is already being considered for as a research tool  for therapy and the results obtained in that area seem to be promising. It is possible that soon, use of skin bioprinters will be a useful tool in surgical reconstruction and a preferred form of therapy in wound and burns treatment.  Alternatively, the idea of bioprinting on a cellular level can further the customization of in-vitro modeling. The possibilities are endless.

Mini-Symposium: “In-Vitro Modeling to Predict Clinical Outcome”

Michael Anthonavage, Moderator

Presentation topics

  1. 3D Tissue Model applications: Genetically engineered 3D skin models for the development of cosmetic products and pharmaceutical drugs Research Focus: Human 3D tissue models
  2. Innate Immunity modeling: Testing the Skin’s Innate Immune Response via In-Vitro and Non-Invasive Clinical Testing Methods
  3. Sunscreen modeling: Bioequivalence Efficacy Test for Sunscreens: Alternative SPF Test Methods Validation
  4. Use of in-silico/vitro modeling for barrier and moisture: Skin Barrier and Hydration: Solutions from in silico & in vitro testing to clinical bioanalysis and imaging
  5. Sensorial modeling in-vitro: The interest of sensorial evaluation in cosmetics: integration of the sensory neuron compartment on unique in-vitro models.
  6. Bioavailability: In-vitro Studies of Skin Deposition & Permeation and Their Practicality
  7. Delivery modeling: Advanced Delivery Modeling Techniques – A Runway to Success
  8. Total exposure modeling: Scalable in silico simulation for human total body exposure prediction using in vitro transdermal and respiratory tract permeability assays
  9. Modeling of lipogenesis: In Vitro Model Challenges for Skin Lipid Measurements in the Clinic
  10. 3D bioprinting: Creation of the most sophisticated 3D Bioprinted full skin models, with immunization, pigmentation, vascularization, and oil function to advance cosmetics efficacy testing.
  11. Systemic Disease modeling for skin: Diabetic Skin: A new target for cosmetic products
  12. Tissue engineering: Latest advances in tissue engineering: from normal to compromised skin

Michael Anthonavage has 26 years of experience in personal care product development and a career spanning background in skin biology, education, and medical technology. Michael has extensive knowledge in product development in personal care product design and specializes in R&D to marketing translation as well as claims validation both in-vitro and in-vivo. He is also an engaging public speaker and product technology advocate with an ability to marry complex ideas and concepts to various consumer needs.   Michael is currently the VP of Operations & Technology at Eurofins CRL, Inc. as well as an educator in herbal studies, clinical lab interpretation, product development strategies, physiology, and skin biology.  Michael’s previous positions have focused on product development for multi-national corporations in Consumer Products and has held R&D leadership positions at several industry ingredient suppliers where he has championed innovative ingredient portfolios.  Michael is currently on the NYC SCC Scientific Advisory Board and has given several lectures for the SCC over the years.   He has a variety of publications and patents to his name and continues to be an influential speaker and educator in the personal care, bioinstrumentation, and skin testing arena.

 

SOFW.com – Interview with Giorgio Dell’Acqua, 2022 NYSCC Chair

by james.runkle@drummondst.com james.runkle@drummondst.com No Comments

Interview with Giorgio Dell’Acqua, 2022 NYSCC Chair

Giorgio Dell’Acqua
2022 NYSCC Chair

Last November the Chapter successfully organized the first ‘back-in-person’ NYSCC Suppliers’ Day after the pandemic break. How was the turnout for attendees and exhibitors?

It was incredible and extremely rewarding to meet face-to face and be reunited with so many members and colleagues. This important event, November 10th and 11th in 2021, attracted 6,807 registrants and 392 exhibitors and they were all eager to find solutions and move forward in their businesses. Noteworthy were the international participants, from 30 countries, who were able to attend despite the travel restrictions.

At the conclusion of this Suppliers’ Day we also had a “Virtual Month of Beauty” that captured even more new registrants and fostered continued engagement.

A big shout to Susanna Fernandes, the 2021 NYSCC Chair, and the entire Suppliers’ Day team for navigating through such unfamiliar territory and being able to bring this edition of Suppliers’ Day to life!

What will the main focus of the 2022 NYSCC Suppliers’ Day on May 3-4, 2022?

The theme this year is “Your Destination for Science & Sustainable Sourcing Solutions.”  We are getting back to basics while viewing all chemistry and formulating through a sustainable lens. This will be evident on the exhibit floor and woven throughout the conference program. We will have subject matter experts in the field of digitalization, sustainability, clean beauty and advanced scientific testing, to name a few, presenting during the show and part of our comprehensive educational program.  All designed to inspire creativity, ingenuity, and innovation.

NYSCC also formed a Diversity & Inclusion Committee this year that will be involved in programming and activities at Suppliers’ Day to engage attendees in conversation about ideas that provide leadership in the cosmetics community around diversity and inclusion.

We cannot just be focused on the science of the ingredients and formulations without considering the impact of their sourcing both on the environment and society.

What can attendees expect this year?

As the only event in North America for ingredients, formulations, and delivery innovations, NYSCC Suppliers’ Day will have something for everyone.

It will be the best forum in North America for the latest trends, scientific findings, global ingredients, raw materials and solutions that will invigorate formulations and accelerate beauty and personal care product developments.

From end-to-end of the Javits Center, scientific and sustainable sourcing solutions that are impacting product development and brand creations will be discussed, experienced and on full display.

Suppliers’ Day this year will also feature 50+ individual conference sessions and curated educational programs, with 430+ exhibitors with more than 8,000 attendees expected to attend from all over the world.  Dynamic areas on the show floor, that once again is expanded into the D Hall at the Javits Center, will provide enhanced experiential learning including the classic Future Chemists Workshop, Presentation Theater, and the return of the INDIE 360 Pavilion. New this year will be a Poster Showcase, featuring the latest scientific findings and ingredients and formulation breakthroughs.

Suppliers’ Day for attendees will help catapult professional advancement and truly be non-stop learning, discovery, and business building.

What will be some highlights of the conference program?

NYSCC continues to grow and enhance the educational component of Suppliers’ Day.  This year we are excited to present our hallmark programs with updated content designed to help those involved in formulations, sourcing, and marketing beauty and personal care products achieve their business objectives including:

  • Discover Sustainability a series of quick but powerful presentations from leading companies that are successfully implementing clean beauty, green formulation, bio-based and cradle-to-cradle certifications, ethical sourcing, and more.
  • Digital Age of Beauty focusing on current strategies and innovations that influence product development, and speed to market. The latest digital tools and techniques that drive, measure and analyze consumer engagement and the demands they set forth will also be presented.
  • World of Chemistry delivering a global perspective and discussion on raw materials, solutions, formulation, and regulations.  Presenters encompass leading experts from countries and regions that are defining the beauty and personal care landscape.
  • Show Floor Presentation Theater complimentary to all attendees, provides insightful, leading-edge supplier presentations and interactive talks.

After last year’s success, INDIE 360 will return and we will be working with IBA (Independent Beauty Association) and other new partners on creating a program that focuses on every angle of the business.  A highlight will be brand founders sharing their candid stories and experiences as well as challenges, opportunities and pathways to success. There will also be a spotlight on how INDIE companies are utilizing unique ingredients or innovative ingredient combinations.

PCPC will also be back to present essential content on cosmetic regulation, safety assessment, and quality assurance.

The NYSCC Scientific Advisory Committee will present two conference sessions that take deep dives into topics that are relevant and timely to chemists and R&D teams and the pre-conference SCC CEP Courses will take place on May 2nd.

We also will continue our nurturing and support of the next generation of chemists with the expansion of our Mentor/Mentee Program and the Future Chemists Workshop with even more colleges and universities participating.  The co-sponsored SCC & NYSCC Career Development Day will also be part of the event

Of course we will also have our Industry Awards Night celebration after the first day of the show.  This year, the finalists of the CEW Beauty Creators Supplier’s Award will be revealed. Industry Awards Night is a great event for renewing partnerships and creating new ones and truly acknowledges the important drivers of innovation and exemplifies Suppliers’ Day core spirit.

Will the event be hybrid?

Yes we will offer a virtual day on May 9th. This will literally be an immersive experience with attendees feeling like they entered the Javits Convention Center in NYC and will give them a 360 degree view of the actual exhibits and expo floor from their desktops or mobile devices.

We also have a platform that makes it easy for exhibitors to provide the same assets and product information for both the live and virtual events and to even schedule appointments with the virtual attendees.

Some of the educational programs offered during the in-person Suppliers’ Day will also be available on May 9th.

Thank you very much for this interview and I hope to see many of your readers at Suppliers’ Day this year.  Please visit www.nyscc.org/suppliersday/ for more information and to register.

A new appreciation of scientific expertise

by james.runkle@drummondst.com james.runkle@drummondst.com No Comments

Inteview with Giorgio Dell‘Acqua

Chairman, New York Society of ­Cosmetic Chemists

How has the coronavirus pandemic affected the work of chemists in the cosmetics industry?

The coronavirus pandemic has affected the role and work of cosmetic chemists in many different aspects. Chemists who were used to going to an office had to learn and adapt to working from home and away from their peers and colleagues. Those who worked in a lab were left in limbo at times waiting for their labs to reopen. And every chemist experienced supply chain disruption, ingredients shortages, as well as delays in manufacturing and shipping. Although our professional and personal lives were disrupted, I am proud and impressed how fellow cosmetic chemists and NYSCC Chapter members have adapted and grown during this unprecedented time.

There were some restrictions and delivery bottlenecks. What did the US have to contend with during this time?

The US have not only federal regulations but also state by state mandated regulations. This added a complex layer of restrictions and, depending on your state of business, dictated when you were allowed to go back to work and how – with some states requiring increased safety and hygienic protocols. There were some labs that were allowed to stay open with very limited disruption of business due to emergency status since they produced reagents and chemicals useful for fighting the pandemic. Delivery bottlenecks and supply chain issues were problematic for cosmetic chemists and their companies, especially if they were sourced from other countries. A localised supply chain became a good back-up plan for those in the industry.

To what extent have the customers’ requirements for cosmetic products changed during this time?

At the beginning of the pandemic there was a big demand for hand sanitisers and cleaning products. Once settling in, consumers started looking for products to increase their well-being and self-esteem due to the isolation and high stress level. Hydrating creams, hand creams, body creams but also products to achieve healthy nails and hair started to be in demand, as well as in-home care routines and DIY kits.

Also, Covid-19 did instil a new appreciation and respect for scientific expertise, and this was evident with consumers of beauty and personal care products. Consumers became more knowledgeable and informed about the ingredients and formulations used in creating and manufacturing the products they purchased.

What role does sustainability play and how does it affect the work of chemists?

Sustainability has been growing steadily as a key concept for the cosmetic industry for the past ten years. The recent pandemic has broadened sustainability to environmental protection and social equity issues. Consumers are demanding products and ingredients associated with a sustainability success story. Formulators are listening and developing products sourced though sustainability standards (including certifications and adhering to CSR guidelines).

What are the advantages and disadvantages of the natural ingredients that customers often demand?

Natural ingredients are centrepieces in current products and formulations and are often used to communicate the product itself. The main advantage and attraction of natural ingredients is that most consumers perceive them as safe. Natural ingredients have also been developed into active, standardised ingredients, with scientific claims and proven efficacy. Even if standardised, the main disadvantage of natural ingredients could be their long-term stability in a formulation. Also, their properties do not always match their synthetic counterpart as well as in a cost per use comparison.

What can so-called “green” or “clean” chemistry achieve here?

Green or clean chemistry and its twelve principles is a growing and significant trend for our industry. It is about environmental responsibility. It is being driven by consumers becoming increasingly conscious, better informed, and more concerned about the safety of product manufacturing and its impact to the environment. Once the synthetic process is optimised to reduce toxicity and waste and adopted on a large scale, it will be a game changer for us and the environment we live in.

“Chemistry is bad – natural is good” These or similar opinions are firmly anchored in the minds of many consumers. Why does “green” or “clean” chemistry play no role for end customers? Shouldn’t more educational work be done here?

There is misinformation in the beauty industry and consumers do get confused by erroneous crowd-source information about some chemicals and led astray by false marketing claims. However, with the rise of the clean beauty movement, and consumers increased interest in learning about the ingredients and the science behind it all, they are getting a better understanding that chemicals and naturals can safely be together in formulas and be effective.

What are the current trends in cosmetics?

Besides natural and clean beauty I see digitalisation, sustainability, customisation, holistic beauty, and the supplement market for beauty from the inside out as big trends. Also, hair care and products that combat stress related to hair loss will be big. There are also more products being developed for people identifying as non-binary and expanding the market in a very interesting way that is addressing people on an individual basis and putting our industry at the forefront of acceptance and inclusivity.

What is already demanded that may not yet be implemented now?

I think more technology in the green products category is needed as well asits increased accessibility. Scientific testing, which is so important needs to be more affordable so that all brands, no matter their size, can benefit.

What are current research topics?

There has been a big push on the use of artificial intelligence to develop solutions for consumers, both in product development, speed to market, and in testing. Also, new testing models for ingredients and products are being studied that mimic the clinical settings to facilitate scientific validation. Finally, the understanding of the effect of ingredients on the different mechanism in our body, as well as the interaction with the exposome and the microbiome is another interesting area of study and exploration.

Which trends will be showcased at NYSCC Suppliers’ Day 2022?

The theme for this year’s Suppliers’ Day, 3rd – 4th May in New York is the destination for science, sustainability, and sourcing solutions. This will be evident on the exhibit floor and woven throughout the conference program. NYSCC formed a diversity and inclusion committee that will be involved in programming and activities at Suppliers’ Day to engage all attendees in conversation about scientific ideas that provide leadership in the cosmetics community around diversity and inclusion.

We cannot just be focused on the science of the ingredients and formulations without considering the impact of their sourcing both on the environment and society.

Naturally derived rheology modifiers and emulsion stabilizers

by james.runkle@drummondst.com james.runkle@drummondst.com No Comments

Modern-day formulators relied on polymers to stabilize o/w emulsions much more than surfactants.  The introduction of polyacrylic acid-derived polymers many years ago enabled formulators to develop stable emulsions with minimal effort.  In realty, formulators used polymers as their primary stabilizers, and they selected the surfactant and esters to tailor the texture and sensorial properties of emulsions.  In fact, polyacrylic acid-based polymers enabled steric stabilization of emulsions due to their anionic charge and contributed to the entropic stabilization due to their ability to bind water very efficiently.  The art of formulation using the concepts of Hydrophilic Lipophilic Balance (HLB) was almost extinct and was replaced by the fast-paced polymeric stabilization.

In recent years, consumers have been driving the trend of naturality demanding manufacturers to formulate their products with naturally-derived ingredients rather than fossil-based ones.  This push towards naturality is forcing formulators to remove their fossil-derived polymers and replace them with naturally-derived counterparts.  At the same time, formulators are also replacing their efficient polyoxyethylene-based (POE) surfactants with polyglyceryl based ones, as POE is no longer in vogue with some consumer groups.  One can say that formulators who have been spoiled for many years with ease of formulation and guaranteed stability outcome are faced with one of their biggest challenge in recent memory.

The search for an identical, naturally-derived replacement of polyacrylic acid-based polymer has created a frenzy among finished-goods companies and raw material suppliers to try to fill the gap.  The first instinct was for formulators to go back and rely on the good old stand-by, xanthan gum.  Xanthan is produced by fermentation, so it is considered naturally-derived.  It is used in relatively low concentrations and has good yield value.  Although xanthan gum has many good attributes, it still has several draw backs.  First, its impact on viscosity is minimal and does not build it efficiently.  Second, it adds a negative slip and tack to formulations that is quite undesirable.  Third, its effect on stability is positive but not quite as good as polyacrylic-based polymers.  Formulators need to make several trials before achieving good stability with xanthan gum.

Another stand-by ingredient is starch.  Starches have been used to thicken and generate yield in emulsions for many years.  An example of a commonly used starch is hydroxypropyl starch phosphate.  Starches typically work through a wide pH range (3-9) and have good salt tolerance.  However, starches are not efficient thickeners as they have to be used between 1 and 4% w/w in the emulsion to impart stability.  When a high level of polymer is used in emulsions it not only reduces the available water for the surfactant to behave properly but it also imparts a certain texture to the formulation which might not be very desirable.

Recently, several companies introduced a variety of gums to stabilize emulsions.  Most recently Diutan gum was introduced.  Diutan is a high molecular weight polysaccharide (5 MM Dalton) with a relatively low charge density on the backbone.  The backbone is made up of four-sugars, namely glucose, glucoronate, glucose and rhamnose and a two-sugar side chain of rhamnose.  Diutan seems to be electrolyte tolerant and builds higher viscosities than xanthan gum when combined with a low level of electrolytes.  However, it does not build enough viscosity on its own based on literature.

Several manufacturers tried combining several natural gums to achieve good emulsion esthetics and stability.  One manufacturer combined xanthan gum, with sclerotium gum, and pullulan.  Other manufacturers are combining acacia and gellan gum, xanthan and guar gum, as well as acacia and xanthan gum.  Such combinations could be good options, but finished-goods formulators tend to lean more towards single ingredient substitutes as they do not crowd the ingredient label and offer greater flexibility in formulation.  In addition, many of these combinations have similar esthetics and do not offer a robust stability profile.

More recently, a new grade of cellulose gum was launched.  This type of cellulose can suspend and has a yield value which separates it from common cellulose gums.  This readily biodegradable polymer was used in stabilizing O/W emulsions made with organic sunscreens as well as inorganic sunscreens.  In one example, formulators were able to develop an O/W inorganic sunscreen formulation containing 20% w/w zinc oxide.  The polymer showed great synergies with currently available, naturally derived polymers like xanthan gum and hydrophobically modified hydroxyethylcellulose.  In addition, the polymer appeared to yield viscosities similar to the one achieved by polyacrylic acid when used alone or in combination with other naturally-derived thickeners.

As a formulator, I am still hopeful in finding an exact replica of a polyacrylic acid type polymer that is naturally derived, biodegradable, efficient, low cost and with good esthetics.  At one point reality will sink in, and will realize that such polymer will not exist.  The mere fact is that the chemical make-up of the backbone of the polymer will be different, and unlike polyacrylic-acid based polymers, the natural ones will not be crosslinked.  Instead, many of the naturally-derived ones are linear polymers with some branching.  In this fast-paced environment, formulators will have to adapt and sharpen their formulation skills.  They will use their creativity and I am sure will create amazing textures with the toolbox they currently have until new technology is introduced or new market trends appear.

Dr. Fares started his career in personal care studying the effect of solvents on sunscreen chemicals.  His interest in skin drug delivery especially from polymeric matrices grew during his graduate work at Rutgers, where he received his Ph. D.

Dr. Fares started his career in personal care studying the effect of solvents on sunscreen chemicals.  His interest in skin drug delivery especially from polymeric matrices grew during his graduate work at Rutgers, where he received his Ph. D.

Dr. Fares worked at Block Drug and GlaxoSmithKline where he held positions in research and development in the areas of skincare and oral care.  After that, he joined L’Oréal where he held several positions of increasing responsibility leading to AVP of skincare.  He is currently the Senior Director of skincare and oral care at Ashland Specialty Ingredients.  Dr. Fares is the author of many publications, and patents and made many presentations in national and international meetings in the areas of suncare, skincare, and oral care.  Dr Fares chairs the NYSCC scientific committee and has won multiple awards in the areas of sun care and polymer chemistry.

X